细胞

479822当前位置:首页  /   百科  /  

细胞(英语:Cell)旧称䏭,是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹其外)。细胞可分为两大类:原核细胞和真核细胞。细菌界和古菌界的生物由原核细胞构成。原生生物,真菌,植物和动物均由真核细胞构成。

生物可分为单细胞生物(仅由单个细胞构成,包括大多数的细菌)和多细胞生物,人体包含数十万亿个细胞(局部样本实验估计总计约3.72 × 1013个)。植物细胞和动物细胞的大小在1μm到100μm之间,所以在显微镜下可见。

细胞生物学,旧称细胞学是研究细胞的形态结构、生理机能、发育、生活史,以及各种细胞器及信号转导路径的学科,可根据研究的尺度来分类,包括显微水平,超微水平和分子水平等不同层次研究细胞的结构、功能及生命活动。


细胞(图1)


细胞构成

生物界由两种细胞构成:原核细胞和真核细胞。生命最先演化成原核细胞;地球上存在生命的最初的15亿年间,原核细胞是唯一的生存形式。化石证据可推断出生命演化成真核细胞是在大约21亿年以前。真核细胞最大的特点是其内部包含了以膜封围的细胞核来存储DNA。真核(eukaryotic)一词源自希腊语,其中前缀“eu”是“真正的”(true)意思,而“karyon”是内核的意思,这里指细胞核(nucleus)。原核(prokaryotic)是指“在细胞核出现之前”,其中前缀“pro”是“在…之前”(before)的意思,映射了原核细胞是在真核细胞之前出现的事实。


原核细胞

原核细胞比真核细胞更简单因此也更小,它没有真核细胞中的细胞核和各种的细胞器。原核细胞分两种:细菌和古菌;他们拥有相似的结构。 构成原核细胞的核物质的是直接与细胞质接触的单个染色体。这个未与细胞质完全隔离的区域称为拟核。 从结构上看,原核细胞分三个区域:

外形,鞭毛和纤毛保护细胞的表面。由蛋白质构成的这种结构使得细胞可以自由运动并且方便细胞间的通讯(并非所有原核细胞都包含鞭毛或纤毛);

包围着细胞的是胞外被膜——通常包括细胞壁及其下层的细胞膜,但是有些细菌在其外层覆盖着荚膜。包膜增强细胞的坚硬度,并通过保护性的过滤功能将细胞与其外部环境隔离。多数的原核生物都有细胞壁,但支原体(细菌)和古细菌例外。细菌的细胞壁由肽聚糖构成,作为第二道屏障来隔离外界的干扰。它同时可以防止细胞由于过度膨胀及高张环境下的渗透压而破裂。一些真核细胞(如植物和真菌)也包含有细胞壁

细胞内部是细胞质,包含了染色体组(DNA),核糖体和各种其他的包括物(inclusion)。染色体通常是一个环形的分子(特例是一种细菌,伯氏疏螺旋体,引发莱姆病)。

虽然原核细胞没有细胞核,但是紧缩后的DNA会形成拟核。原核细胞拟核外可携带环形的外因子控制的DNA,称为质粒;质粒可提供额外的功能,如对抗生素的耐药性。

真核细胞

植物,动物,真菌,黏菌,原生动物,及藻类均属于真核生物。这类细胞,其宽度可达典型原核细胞宽度的15倍,而体积可达原核细胞的1000倍。原核细胞和真核细胞的最大不同点在于真核细胞内包含有以膜边界的隔间,这些隔间是进行特定的新陈代谢活动的场所。其中最重要的是细胞核,这个隔间正是遗传物质DNA的所在地。细胞核是真核细胞命名的由来,它的意思是“真正带细胞核的细胞”。其他的不同点包括:

真核细胞中细胞膜的功能与其在原核细胞中的功能类似,仅在结构上有些微不同。真核细胞可能有也可能没有细胞壁

真核细胞的DNA排列成一个或多个线性分子,与组织蛋白紧扣而形成染色体。所有的染色体被保存在细胞核内,由核膜将其与细胞质分隔开。某些细胞器例如线粒体拥有自身的DNA。

很多真核细胞长有“初生纤毛”。初生纤毛在嗅觉感觉、机械感觉和热感觉等功能上发挥着重要的作用。因此纤毛“可被视为传感器似的触角,用以协调大量的细胞信号传导,有时为纤毛运动,或者是另一种情况下为细胞分裂和变异传递信息。”

真核细胞可以通过纤毛或鞭毛来移动。其鞭毛比原核细胞更复杂。

亚细胞成分

细胞是生物体的构造和生理的基本单位,却不能因此认为所有的生物细胞都相同,即使在同一个个体内,也有因为分化而产生各式各样外观与功能不同的细胞,即使相同种类的细胞,也可能正在执行的生理工作也有差异,但是基本上彼此都有共同的基本构造。

细胞膜

细胞膜为细胞与环境之间以及细胞器细胞质之间的分界,能够调节物质的进出,而膜上的蛋白质有许多种类,有的可以适时协助物质进出,有的能够传递讯息,有的则负责防御(免疫系统)的功能。细胞膜(又称原生质膜)为细胞结构中分隔细胞内、外不同介质和组成成分的界面。原生质膜普遍认为由磷脂质双层分子作为基本单位重复而成,其上镶嵌有各种类型的膜蛋白以及与膜蛋白结合的糖和糖脂。 原生质膜是细胞与周围环境和细胞与细胞间进行物质交换和信息传递的重要通道。原生质膜通过其上的孔隙和跨膜蛋白的某些性质,达到有选择性的,可调控的物质运输作用。

细胞质

细胞膜就像一个塑料袋一样,装着满满的液状、胶体状的细胞质,可粗略分为细胞质基质和细胞器细胞质含有维持生命现象所需要的基本物质,例如糖类、脂质、蛋白质、与蛋白质合成有关的核糖核酸,因此也是整个细胞运作的主要场所,透过细胞膜外接收的讯息、细胞内部的物质,共同调节基因的表现,影响生理活动。另外,细胞质内部也有多种网状构造,称为细胞骨架(Cytoskeleton),可以协助维持细胞形状,也能引导内部物质的移动,一些细胞骨架会于细胞分裂时,形成可以透过染色而观察的纺锤丝,有一些骨架更能帮助细胞运动。

细胞器

细胞核 (nucleus) ——具有双层膜的细胞器细胞核是操控整个细胞的控制站,主要携带遗传物质(DNA),包括染色体(脱氧核糖核酸加上一些特殊的蛋白质)、核糖核酸等,核膜上有许多小孔称做核孔,由数十种特殊的蛋白组成特别的构造,容许一些物质自由通过,但是分子量很大的核糖核酸、蛋白质就必须依赖这些蛋白辅助,以消耗能量的主动运输,来往于细胞质细胞核之间。细胞分裂的期间可以看到细胞核中最显著的构造——核仁,其组成为核糖体RNA,以及合成核糖体所需的蛋白质。除核仁外,细胞核中还有许多其它核细胞器,如柯浩体, PML体等。有趣的是,有些细胞为了执行特别的工作而没有细胞核:哺乳纲动物的红细胞为了减少消耗携带的氧气,所以成熟后没有细胞核;植物的筛管、导管、假导管为了运输功能,成熟后没有细胞核

核仁 (nucleolus) ——是真核细胞的细胞核中最巨大的结构,其主要功能是核糖体的合成与组装。其他功能还包括组装信号识别颗粒,同时也是细胞压力反应的一部分。

内质网 (endoplasmic reticulum) ——有一部分的细胞核核膜会向细胞质延伸,形成许多相通的小管与囊袋,构成迷宫状的网络,称为内质网,部分内质网上附着著核糖体,称为粗面内质网,其他的部分则称为滑面内质网。而光面内质网上有特殊的酶系统,负责合成脂质,也能够氧化有毒物质以减低毒性,在肝脏协助可调节血糖,在肌肉细胞可储存许多钙离子协助肌肉收缩;粗面内质网则和蛋白质的合成有密切关联,附着在粗面内质网的核糖体所制造的蛋白质,主要运送到膜上,或是分泌出细胞之外。

核糖体(ribosomes) ——负责合成蛋白质的细胞器,由大、小两个次单元组成,次单元之中有核糖体RNA和核糖体特有的蛋白质,在细胞质中,接受细胞核的遗传讯息、细胞外的刺激讯息,以合成蛋白质,可分为游离核糖体(Free ribosomes)与附着核糖体(Bound ribosomes),前者所制造之蛋白质专用于细胞质内部(不含细胞器内部),后者则先经过内质网腔修饰,以小囊泡运输到高尔基体做进一步的分类与修饰,完成的蛋白质主要包装在细胞器之中、运到膜上、或是运出细胞之外。

高尔基体 ——是好几个扁平的囊袋相叠而成,而且有固定的方向性,彼此之间并不相通。主要负责蛋白质的修饰、分类与输送,从粗面内质网合成的蛋白质被包在小囊泡中首先送到高尔基体,在这里一些酶会将蛋白质修饰,例如加上一段特别的糖类标记,而许多脂质、糖类也会在这里合成并且修饰,随后再利用小囊泡(vesicles)往外运输。

溶酶体 ——又称“溶酶体”,是单层膜的囊状细胞器,内部含有数十种从高尔基体送来的水解酶(hydrolytic enzymes),这些酶(或是称做酵素)在弱酸的环境之下(通常为PH值5.0)能有效分解生命所需的有机物质,许多透过细胞吞噬的物质,会先形成食泡(Food vacuole),然后跟溶酶体融合并且进行消化。另外溶酶体也对老旧、损坏的细胞器细胞质进行分解,产生的小分子随后可再次被细胞利用,一旦溶酶体破裂释放出水解酶,细胞就会被分解,许多细胞凋亡的程序都与溶酶体有关,例如:蝌蚪变成青蛙尾巴的消失、人类胚胎手指的形成。

液泡(液泡) ——是另一种囊状的单层膜细胞器,在细胞中扮演不同角色,形状可大可小。通常植物的液泡较大。在原生动物,例如草履虫,液泡扮演伸缩泡的功能,将过多的水分收集并排出体外;大多数植物细胞液泡在细胞成熟后,占有大部分的细胞体积,可以储存水分、存放色素,有些种类植物的液泡更能够协助光合作用的进行,另外液泡也有一个很大的功能:协助细胞往大体积的方向演化同时,能够使得细胞质的表面积变大,有利物质交换。

线粒体(mitochondrion) ——主要协助细胞呼吸,并且产生细胞使用能量最直接的形式,三磷酸腺苷。特别的是线粒体有自己的遗传分子,与细胞核的遗传物质不同,只遗传到这个细胞器的子代细胞器,而不是子代细胞,能够让线粒体自我分裂增殖,制造本身需要的一些蛋白质,但是仍有一些调节控制的过程受到细胞核的影响,更重要的是,线粒体基因只在母系遗传,不遵守孟德尔遗传律,有助于研究人类演化的研究。必须特别注意的是,“线粒体”不应该误写为“腺粒体”。线粒体之所以如此称呼,是因为在显微镜下有两类主要的外观,是一种双层膜的细胞器,外膜平滑,内膜则朝内部形成皱折状的构造称为折襞,目的是为了增加生理作用的表面积,折襞之间充满底物,其中有许多的代谢反应进行。

叶绿体 ——也是双层膜状的细胞器,与线粒体类似,有自己的遗传物质,能够自己分裂增殖,自制本身所需的一些蛋白质。主要功能是进行光合作用,借由光能产生营养物质,也就是吸收光能,转变成化学能,并借此将无机物(二氧化碳和水)合成为有机物(糖类)。光表示光能,合表示合成。


细胞过程

增殖及调控

细胞周期亦称有丝分裂周期,细胞生长到一定程度,不是繁殖就是死亡。细胞分裂后产生的新细胞生长增大,随后又平均地分裂成两个和原来母细胞“一样”的子细胞,细胞这种生长与分裂的循环称细胞周期

较为普遍的细胞分裂方式为有丝分裂和减数分裂,在生物的个体发育中,这两种分裂方式交替发生,以保证生物种族的延续

分化与基因表达

细胞分化是个体发育过程中细胞之间产生稳定差异的过程。所以,细胞分化是指同源细胞通过分裂,发生形态、结构与功能特征稳定差异的过程。

细胞分化的实质是基因选择性表达的结果,在个体发育过程中基因按照一定程序相继激活的现象,称为基因的差次表达(differential expression)或顺序表达(Sequential expression)。即在同一时间内不是所有的基因都具活性,而是有的有活性,有的无活性,有些细胞是这部分基因有活性,有些细胞则是另外一些基因有活性。

组织特异性基因和管家基因 一类是维持细胞最基本生命活动的基因,是所有一切细胞都需具备的,由此译制基本生命活动所必需的结构和功能蛋白。这类基因称“House-keeping gene”,译为“管家基因”,它们与细胞分化关系不大。如编码与细胞分裂、能量代谢、细胞基本建成有关的蛋白质的基因属此类。另一类是译制特异蛋白质的基因,与细胞的基本生存无直接关系,但与细胞分化关系密切,被称为“Luxury gene”,译为奢侈基因。

组合调控引发组织特异性基因的表达 弄清了细胞分化的实质,研究者们便把注意力集中到基因选择表达的控制机理方面。除细胞核细胞质的相互作用对细胞分化的影响外,包括环境在内的诸多因素均对细胞分化有重要的影响。

细胞衰老与凋亡

细胞衰老的研究只是整个衰老生物学(老年学,人类学)研究中的一部分。所谓衰老生物学(biology of senescence,或称老年学、老人学,gerontology)是研究生物衰老的现象、过程和规律。其任务是要揭示生物(人类)衰老的特征,探索发生衰老的原因和机理,寻找推迟衰老的方法,根本目的在于延长生物(人类)的寿命。

  多细胞有机体细胞,依寿命长短不同可划分为两类,即干细胞和功能细胞。干细胞在整个一生都保持分裂能力,直到达到最高分裂次数便衰老死亡。如表皮生发层细胞,生血干细胞等。

  细胞死亡是细胞衰老的结果,是细胞生命现象的终止。包括急性死亡(细胞坏死)和程序化死亡(细胞凋亡)。细胞死亡最显著的现象,是原生质的凝固。事实上细胞死亡是一个渐进过程,要决定一个细胞何时已死亡是较困难的。除非用固定液等人为因素瞬间使其死亡。那么,怎样鉴定一个细胞是否死亡了呢?通常采用活体染色法来鉴定。如用中性红染色时,生活细胞只有液泡系染成红色,如果染料扩散,细胞质细胞核都染成红色,则标志这个细胞已死亡。

细胞凋亡是一个主动的由基因决定的自动结束生命的过程,所以也常常被称为程序化细胞死亡。凋亡细胞将被吞噬细胞吞噬。这一假说是基于Hayflick界限提出的:1961年Hayflick根据人胚胎细胞的传代培养实验提出。指细胞在发育的一定阶段出现正常的自然死亡,它与细胞的病理死亡有根本的区别。细胞凋亡对于多细胞生物个体发育的正常进行,自稳平衡的保持以及抵御外界各种因素的干扰方面都起着非常关键的作用。例如:蝌蚪尾的消失,骨髓和肠的细胞凋亡,脊椎动物的神经系统的发育,发育过程中手和足的成形过程。


评论

登录后才可以留言!
相关文章